250128 WISE NETWORKING MEETING 2025

MAX IV –opportunities for WISE research

Olof Karis, MAX IV Director

Materials research – A collaboration game! Volvo, Alfa Laval, Tetra Pak...

This is MAX IV

- A Swedish, national laboratory for X-ray research with Lund University as host
- A fourth-generation light source – up to 100 times brighter than the earlier generation and highly coherent
- Available for academic and industrial users worldwide

2024 beats 2023 and is the best year so far for MAX IV

PUBLICATIONS

EMPLOYEES

Ĕ proprietary user groups including mediators ~4950 hours ~850 hours of beamtime for paid user scientific proprietary proprietary projects connected ndustrv users beamtime with industry Sweden

INDUSTRY

Dynamic structure

Structural changes by external triggers in two and three dimensions

Phase transitions

Battery electrodes

Beamlines: DanMAX, ForMAX

Electromigration in copper interconnects

- Integrated circuits are becoming smaller with higher current densities leading to higher demands on the copper interconnects. One of the issues is electromigration.
- Copper structures subjected to various temperatures and currents were studied using nano-diffraction with a 62 nm beam at NanoMAX.
- Results suggest that early stages of electromigration is connected to stress from mismatch in material thermal expansion, but later in the process comes from current-induced stresses.

Bulk chemistry

Detailed information on chemical species and surroundings

Beamlines: Balder, SoftiMAX, DanMAX, NanoMAX

Industrial side streams – Steel slag

Imaging

Image with chemical/structural/magnetic contrast in 2 and 3 dimensions

Beamlines: DanMAX, NanoMAX, MAXPEEM, SoftMAX, ForMAX

 Konterna Pack
 Solutions
 Insights
 Sustainability
 About Tetra Pak
 Innovation

 Who we are
 News & Events
 Careers
 Stories

Tetra Pak commences first-of-itskind research into fibre-based food packaging

Aiming to provide fresh insights towards the company's journey to develop the most sustainable food package

Lausanne, Switzerland, 07 February 2023: Today, Tetra Pak has commenced ground-breaking research towards advancing fibre-based sustainable food packaging, in collaboration with <u>MAX IV</u> – the most modern synchrotron[] radiation laboratory in the world. The research aims to uncover fresh insights into the nanostructure of fibre materials, with the first application to optimise the composition of materials used for paper straws.

Image: Elin Persson Jutemar and Eskil Andreasson, Tetra Pak, in the ForMAX sample preparation lab at MAX IV. Credit: Anna Sandahl/MAX IV

Surface properties in vacuum

Oxidation Fundamental catalysis Aerosols

Functional surfaces

Beamlines: MAXPEEM, FlexPES, HIPPIE, SPECIES, FinEstBeAMS Protective surface oxide layer of Stainless Steel

Figures: Alfa Laval

The future

Looking forward

- MAX 4^U accelerator upgrade
- Materials science beamlines in partnership with WISE
 - An imaging beamline supporting materials science for sustainability
 - A spectroscopy beamline supporting materials science for sustainability
- A medical imaging beamline

4D tomography time series showing solute transport at the pore scale (Marone et al., Front. Earth Sci., 2020)

Studying biology at different length scales										
		10 ⁻⁶ m		10 ^{.9} m	10-10		m	-		
25							-() }	and the second s		
	Animals	Organs	Tissues	Cells	Micro- structures	Molecular complexes	Biomolecules	Atoms		
	Disease models Hist		oathology	Cell Biology	Molecular Medicine/Chemical Biology				-	
	Ме	dMAX	NanoMAX, SoftiMAX	ForMAX	CoSAXS	BioMAX	MicroMAX	Balder		
		Cryo EM								

MAX IV – WISE Beamline Design

WISE funded development of 3 conceptual design reports in 2023. 2 proposed beamlines were selected to continue with technical design reports (TDRs). Timeline: TDRs finished March 2025. Aim to open for first users 2029.

A dedicated **tomography** beamline enabling 4D imaging of materials with high spatial and temporal resolution.

A HArd X-ray PhotoElectron Spectroscopy (**HAXPES**) beamline for chemical characterization of buried interfaces

TDRs funded by

Wallenberg Initiative Materials Science for Sustainability

SpectroWISE Beamline – Science case

Operando and in situ studies of functional interfaces:

Wallenber Materials for Susta

Wallenberg Initiative Materials Science for Sustainability

TomoWISE – Science Cases

Hydration of Portland cement studied with deep sub-µm resolution measured at the Swiss Light Source. TomoWISE will be able to perform similar measurements 100 times faster, giving access to the early stages of hydration [Nat. Commun. 14 (2023), 2652].

Crack propagation in nanoparticles of the Si electrode of a Li-ion battery measured during lithiation. Similar studies will be possible to do with higher spatial and temporal resolution at TomoWISE [J.Power Sources 342 (2017) 904–912].

Wallenberg Initiative Materials Science for Sustainability

What it means for industry

- Study raw materials behaviour and properties at unprecendented resolution
- Enable radical **product optimisation**
- Improve manufacturing processes
- Obtain **input and data** for computational modelling, patents, marketing, etc.
- Gain new insights transform and accelerate your business

Two ways to become a user

✓ Free

- ✓ Apply for experiment time (2 open calls/year)
- ✓ Collaborate with an academic research partner
- ✓ Proposals ranked on scientific merit
- ✓ Publish your results

Proprietary access

- ✓ Paid
- ✓ Faster, industry-tailored access
- \checkmark Full confidentiality and IP rights
- ✓ One time project or long-term framework agreement
- \checkmark You own your results

MAGNUS LARSSON Head of Industrial Relations

MARC OBIOLS-RABASA Industrial Relations Officer

MARYAM OLSSON Research and communications coordinator

Contact the industry office

industryoffice@maxiv.lu.se

MAGNUS FREDRIKSSON Program Manager (Alfa Laval)

CLAIRE LYONS Project Coordinator InfraLife

