
Using synchrotron radiation to gain 
atomic level insight into materials 

for solar cells



Solar cells, status 
and technologies

Synchrotrons and 
photoelectron 
spectroscopy

Research overview

Research examples



0

200

400

600

800

1000

1200

1400

1600

2005 2010 2015 2020

In
st

al
le

d 
C

ap
ac

ity
 (G

W
)

Year

Wind Solar Hydro

Global installed capacity Global electricity generation

Fossil 
fuels, 
61.3%Bio + waste, 

2.6%

Nuclear, 
10.0%

Hydro, 
16.6%

Solar, 
3.1%

Wind, 
6.0%

Others, 
0.5%

Data from www.ren21.net, from www.iea.org and from https://ourworldindata.org

Fossil 
fuels
61.3%

Bio 
2.4%

Nuclear
9.2%

Hydro
15.0%

Solar
4.6%

Wind
7.3%

Others
0.3% 2022

http://www.ren21.net/
http://www.iea.org/
https://ourworldindata.org/


<20 US cent 
production cost 

per Watt

~20% module 
efficiency

26% record 
efficiency

~30% 
thermodynamic 

limit

CIGS
23% record 
efficiency

Thin film solar cells

Tandem solar cells
>30% record 

efficiency

Perovskite (ABX3)
26% record efficiency

Organic solar cells
19% record 
efficiency

Monocrystalline silicon 



• Layer-by-layer design (active layer + selective contacts)

• Different materials combinations 

Active 
layer

+

Hole 
selective 
contact

Electron 
selective 
contact

+
-
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Fundamental understanding of energy
conversion process at an atomic level

Voltage

+

- 1. Light absorption
2a. Electron transport / 

collection
2b. Hole transport / 

collection
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spectroscopy
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Properties of X-rays
• Choose and vary 

photon energy
• Intensity
• X-ray pulses



X-rays
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Hard X-rays

Complete solar cell X-rays in – electrons out

Binding energy of electrons:
Ø Core levels (element and chemistry specific)
Ø Valence levels 

Surface sensitive – escape depth of electrons

Core levels
e.g. Pb5d, C1s

Valence levels

Vacuum level

Photoelectron

X-rays
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Single crystal

Clean surface

Dynamic

Model
systems

Complete solar cell

Static

Real 
systems

Fundamental 
properties

StabilityInterface 
properties

Energy 
landscape 
operando

Dynamics 
of charges

Time-resolved
photoelectron

spectroscopy on real 
devices

What are the fundamental 
properties of new materials?

What are the properties of 
interfaces (e.g. energy alignment)?

What are the mechanisms behind 
degradation?

What are the interface properties 
under device operation?

How do charges move and how 
fast?

How do charges move in a real 
device?
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A. García-Fernández et al., Small, 2022, 2106450. 
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Svanström et al. ACS Appl. Mater. Interfaces 15, 12485-12494 (2023). 
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Can use information to determine where
photovoltage is generated and lost



Laser pump pulse: induce changes

Ø X-ray probe pulse: Follow these changes over time

Ø Time resolution depends on pulse length of X-rays and laser

Ø Follow photovoltage through core level shift

Pb 5d e-

X-ray probe

pump

delaytime

Sample

T. Sloboda et al. Scientific Reports, 10, 1-14 (2020).
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Pump = 2.4 eV (515 nm)
Probe = 360 eV
Time resolution = 70 ps
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T. Sloboda et al. Scientific Reports, 10, 1-14 (2020).



Single crystal

Clean surface

Time-resolved
photoelectron

spectroscopy on real 
devices

Static Dynamic

Photoelectron spectroscopy to gain atomic level 
insight into energy conversion process in solar cells

e-

X-rays

PESSynchrotron

Ø Use insights to develop materials and devices


