Single Atom Catalysts for Sustainable Conversion of Synthetic Chemicals

Jonas Weissenrieder

Materials and Nano Physics, AlbaNova Universitetscentrum, KTH

WISE @ KVA March 2023

Storage from intermittent sources of power.

Heavy long-distance travel.

Transfer of energy between regions.

Chemical industry - 10% of Europe's consumption of fossil resources.

Energy dependence.

Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H_2

PROX reaction: $1\% \text{ CO} + 0.5\% \text{ O}_2 + 48\% \text{ H}_2 + \text{He}$ (balance)

on Pt for preferential oxidation of CO in H2. Nature 2019 (7741) 631-5.

Chunlei Wang¹, Heloise Tissot¹, Markus Soldemo², Junling Lu³, Jonas Weissenrieder, Inverse single-site Fe₁(OH)_v/Pt(111) model catalyst for preferential oxidation of CO in H₂, Nano Research 15 (2022) 709-715

Ferrocene (FeCp₂), steric hindrance, isolated sites

In situ studies of 1c-Fe on Pt(111)

Fe1(OH)3@Pt(111)

Reducible to Fe²⁺. Formation of a Fe(OH)₃ under PROX conditions

In situ XPS 1c-Fe on Pt(111)

Fe ₁ (OH) ₃ @Pt(100)	Binding energy (eV)
1-OH	531.30
2-OH	531.21
3-OH	531.29

Reducible to Fe2+. Formation of a Fe(OH)3 under PROX conditions

Reaction pathway for CO oxidation during PROX

Fe(OH)₃ and Pt collaborate

Selective ALD deposition of Fe on $Cu_2O(100)$

STM of catalyst preparation

APXPS (MAX IV) of catalyst preparation

High-Density Isolated Fe_1O_3 Sites on a Single-Crystal $Cu_2O(100)$ Surface Chunlei Wang, Heloise Tissot, Joakim Halldin Stenlid, Sarp Kaya, and Jonas Weissenrieder J. Phys. Chem. Lett. 2019, 10, 23, 7318–7323

Formation of stable isolated Fe centers

(a) Co 2p

Intensity (a.

800

795

1100 eV

Clean Cu₂O(111)

779.6

785

Binding energy (eV)

Co 2p (MAX IV)

790

CoCp, adsorption 298 K

10⁻⁶ mbar O, 473 K

780

775

STM of catalyst preparation

Stabilization of Cu2O through Site-Selective Formation of a Co1Cu Hybrid Single-Atom Catalyst C Wang, Y Kong, M Soldemo, Z Wu, H Tissot, B Karagoz, K Marks, et al, Chemistry of Materials 34 (2022) 2313-2320

APXPS (MAX IV) and simulated reaction pathways

Stabilization of reactive Cu⁺ sites .

WISE PhD project

In-Cu mixed oxides for CO₂ conversion

Cu₂O(110) surface structure

ALD precursors

Copper dimers at the $Cu_2O(110)$ surface

Cu⁺ sites

Structure, stability, chemical properties

Link to application portal: https://kth.varbi.com/en/what:job/jobID:588420/where:4/

9

Thank you for your attention.